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Critical discussion of the two-loop calculations for the Kardar-Parisi-Zhang equation

Kay Jörg Wiese
Fachbereich Physik, Universita¨t GH Essen, 45117 Essen, Germany

~Received 16 June 1997!

In this paper, we perform a careful analysis of the renormalization procedure used in existing calculations to
derive critical exponents for the Kardar-Parisi-Zhang equation at two-loop order. This analysis explains the
discrepancies between the results of the different groups. The correct critical exponents ind521« dimensions
at the crossover between the weak- and strong-coupling regime arex5O(«3) andz521O(«3). No strong-
coupling fixed point exists at two-loop order.@S1063-651X~97!08010-0#

PACS number~s!: 05.40.1j
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I. INTRODUCTION

The Kardar-Parisi-Zhang~KPZ! equation@1#

]h~x,t !

]t
5n¹2h~x,t !1

l

2
@¹h~x,t !#21h~x,t !, ~1!

h~x,t !h~x8,t8! 52Ddd~x2x8!d~ t2t8! ~2!

plays a central role as the simplest field-theoretic model
nonlinear growth and has extensively been studied during
last years. Whereas the situation is clear for space dimen
d51, the~physically more interesting! case ofd>2 can only
be attacked by approximative methods or field-theoretic p
turbative expansions. Using the latter, the fixed point str
ture of the renormalization-group flow ford521« has been
obtained. Two domains can be distinguished: For small
fective coupling

g5
l2D

n3 , ~3!

the renormalization group flow tends to 0 in the lon
wavelength limit, for large coupling to a strong-couplin
fixed point g5gSC. The crossover takes place atg5gCO,
which turns out to be of order« in an « expansion and can
therefore be studied perturbatively.

Three such calculations have been performed, one by
and Plischke@2#, another by Teodorovich@3#, the third by
Frey and Ta¨uber@4#. The results are contradictory. We we
able to trace back the difference to a problem in the appl
tion of the renormalization-group procedure, which led@2#
and @3# to incorrect results, see the discussion in Secs.
IV, and V. We will first derive some elementary and hop
fully well-known properties of the renormalization grou
which will help us to make the point clear.

II. SOME ELEMENTARY PROPERTIES ABOUT
RENORMALIZATION AND THE FREEDOM TO CHOOSE

A RENORMALIZATION SCHEME

In the following, we want to exploit the freedom one h
to choose renormalization factors in the dimensional regu
ization scheme. As an example, take any massless theory
suppose that the derivative with respect tok2 of the bare and
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renormalized two-point functions~we denote this by a dot! at
a given renormalization scalem are related by

ĠB
~2!5Z~gR!ĠR

~2! . ~4!

The factorZ(gR), which is a function of the renormalize
couplinggR and« only, is introduced to define a finite reno
malized two-point functionGR

(2) . Then, it is standard to ob
tain the anomalous dimension of the field, given by t
renormalization-groupz function, see, e.g.,@5#, as variation
of ln(Z) with respect to the renormalization scalem, keeping
bare quantities fixed,

z~gR!52
1

2
m

]

]m U
B

ln Z~gR!52
1

2
b~gR!

]

]gR
ln Z~gR!.

~5!

In the second line, we have introduced the renormalizati
groupb function, which is obtained from the variation of th
renormalized couplinggR with respect to the renormalizatio
scalem

b~gR!5m
]

]m U
B

gR, ~6!

and where renormalized and bare coupling constantsgR and
gB are related by

gB5m«Zg
21~gR!gR . ~7!

The critical pointg* is the zero of theb function

b~g* !50. ~8!

The critical exponentz* is

z* 5z~g* !. ~9!

All these definitions are standard@5# and are used~in slightly
different notations! in @2–4#. ~@3# uses a cutoff regulariza
tion, but there is no principal difference.! We now ask the
question: Is the renormalization factorZ(gR), which was
introduced in Eq.~4!, unique? The answer is no.Z(gR) can
be multiplied by any finite factorZf(gR) and GR

(2) remains
finite. Instead ofZ(gR) one could therefore useZ8(gR),
5013 © 1997 The American Physical Society
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Z8~gR!5Z~gR!Zf~gR!. ~10!

Let us verify that this is consistent and that the critical e
ponentz* is unchanged. The newz8 function is

z8~gR!52
1

2
m

]

]m
lnZ8~gR!

5z~gR!2
1

2
b~gR!

]

]gR
lnZf~gR!. ~11!

As Zf(gR) is finite for anygR , b(gR)(]/]gR) ln Zf(gR) tends
to 0 for gR→g* and we obtain the result

z8~g* !5z~g* !. ~12!

One can also prove that the freedom to choosegR is a simple
finite reparametrization

gR85gRZf~gR!. ~13!

One has, however, to be careful to make this change of v
ables in every renormalization factor.

Let us now discuss the minimal subtraction scheme. S
pose thatGB

(2) at the renormalization pointm satisfies up to
two-loop order, i.e., up to ordergR

2,

ĠB
~2!5S 11a21

gR

«
1a0gR1a1gR«1•••1b22

gR
2

«2 1b21

gR
2

«

1b0gR
21b1gR

2«1••• D1, ~14!

whereai andbi are constants and where we have suppres
higher order terms in«. We now want to introduce renorma
ization factors. Of course, setting in Eq.~4!

Z~gR!511a21

gR

«
1a0gR1a1gR«1•••1b22

gR
2

«2 1b21

gR
2

«

1b0gR
21b1gR

2«1••• , ~15!

makesGR
(2) finite. @The dots stand for the same higher ord

terms as in Eq.~14!#. But this is not the simplest possibl
choice. The idea of the minimal subtraction scheme is now
choose aZ factor, which contains only the pole terms in«.
One is therefore tempted to replaceZ by

ZPM~gR!511a21

gR

«
1b22

gR
2

«2 1b21

gR
2

«
. ~16!

The reader is invited to stop for a second to think about
choice before going on to read.

Let us see whetherZPM correctly renormalizes the theory
Then, the ratio ofZ andZPM has to be finite. Expanding u
to ordergR

2 and dropping all terms of order«0 and higher, we
obtain

Z~gR!

ZPM~gR!
512a0a21

gR
2

«
1••• . ~17!
-
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This ratio is not finite andZPM therefore not a correct renor
malization factor. We will henceforth call this wrong pre
scription to find theZ factor in the minimal subtraction
scheme the ‘‘pseudo-minimal-subtraction scheme’’ in ord
to make clear that this very special mistake was made.

The correct factor to be used in a minimal-subtracti
scheme would be

ZMS~gR!511a21

gR

«
1b22

gR
2

«2 1~b212a0a21!
gR

2

«
~18!

as the reader may easily convince himself by the const
tion given above.

Apparently, the terma0 cannot be neglected at two-loo
order. Let us determine more generally which terms m
intervene in ann-loop calculation. First of all, the perturba
tive fixed point in an« expansion is of order«

g* ;«. ~19!

~There are situations whereg* is of orderA« or similar. For
those cases the following argument has to be modified.! Let
us now determine in which order of« a term of order

gR
k

« l ~20!

in Z(gR) will contribute to thez function atgR5g* . Taking
care of the factor«, which comes from the variation o
ln Z(gR) in the definition ofz(gR), Eq. ~5!, the answer is,
with the help of Eq.~19!

«
~g* !k

« l 5«11k2 l . ~21!

To calculate the critical exponentz* up to order«n, one
therefore has to determine all contributions toZ which are
proportional togR

k up to order«n2k21.
This means that to calculate up to order«2, one can drop

terms fromZ and retain only

Zd~gR!511a21

gR

«
1a0gR1b22

gR
2

«2 1b21

gR
2

«
. ~22!

Note again thata0 cannot be dropped.
In the next sections we will apply these considerations

the two-loop calculations of the KPZ equation in the liter
ture.

III. ANALYSIS OF THE WORK BY SUN AND PLISCHKE

In this section we are going to analyze the two-lo
renormalization-group calculations by Sun and Plischke@2#,
see also the comment in@6#. From their Appendixes A and B
it is clear that the finite part of the one-loop contribution
dropped. They write ‘‘In this Appendix we list all expres
sions of Feynman graphs . . . and their final results in 22«
dimensions to orderO(«21).’’ As there is a finite contribu-
tion at one-loop order, the discussion given above shows
their results are incorrect. We would have liked to incorp
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rate the missing term in their calculations but as not alZ
factors are given explicitly we have to leave it to the autho

IV. ANALYSIS OF THE WORK BY TEODOROVICH

Let us also look at the article by Teodorovich@3#. Teodor-
ovich is conscious that the finite part of the one-loop d
grams enters as insertion of these diagrams into two-l
diagrams and he explicitly calculates the finite contributio
to the one-loop diagrams in his equations~5.1! and~5.2!. But
then he also drops the finite contribution toSR, which is still
present in Eq.~5.1!, in Eq. ~5.3!. We are therefore led to th
same conclusion as in the case of Sun and Plischke:
results are incorrect. Let us, however, mention that Teod
ovich does not agree with our criticism. He states that
used the Bogoliubov-Parasiuk-Hepp-Zimmermann~BPHZ!
procedure and inserted one-loop renormalized terms in o
to calculate the renormalization factors@8#. It, is, however,
impossible from his article@3# to get the precise procedur
enabling one to verify his claim.

V. ANALYSIS OF THE WORK BY FREY AND TA ¨ UBER

In this section we are going to analyze the two-lo
renormalization-group calculations by Frey and Ta¨uber @4#,
see also their comment in@7#.

They introduce the following two renormalization co
stants for the renormalization ofD andn, see@4#, Eqs.~3.43!
and ~3.44!:

ZD512
ĝB

«
2~d21!

ĝB
2

«
2

d22

d

ĝB
2

2«
1~d21!

ĝB
2

«2 1O~ ĝB
3 !,

~23!

Zn511
d22

d F ĝB

«
1~d21!

ĝB
2

2«
1

d22

d

ĝB
2

2«
2~d21!

ĝB
2

2«2G
2

d21

d

ĝB
2

2«
1O~ ĝB

3 !, ~24!

ĝB5m«gB , ~25!

«5d22. ~26!

„Note that ourĝB5ĝ0 in the notation of@4#. To simplify the
considerations, we also have replaced the functionFn(d) in
Eq. ~3.44! of @4# by its value atd52, see Eq.~A38! of @4#.
The difference is a term of order«0 and can be neglected i
two-loop order.… As we will check later theseZ factors sub-
tract all divergences correctly. Let us first explain the appe
ance of factorsd and «. Frey and Ta¨uber @4# use a dimen-
sional regularization prescription, where divergences app
as poles in 1/«. This is the origin of the factors 1/« and 1/«2

in Eqs.~23! and ~24!. On the other hand, there are integra
of the type

E
k
@2~kW•pW !22k2p2# f ~k2!, ~27!

which are identical to
.

-
p

s

he
r-
e
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r-

ar

p2
22d

d E
k
k2f ~k2!. ~28!

Frey and Ta¨uber call the factors (d22) ‘‘geometrical’’ be-
cause they result from scalar products in the integrand.
renormalization scheme in Ref.@4# is such that those geo
metrical terms are not« expanded in order to meet the co
dition that a fluctuation-dissipation theorem is valid ind51
dimensions. This procedure results in the appearance o
first nontrivial term inZn @see Eq.~24!#,

d22

d

ĝB

«
. ~29!

From the reasoning in@4# one could gain the impression tha
such a term can be dropped, if the distinction between fac
d22 and« is not made. This would be incorrect, since—
we have explained in detail in Sec. II—this term has to
retained in order to renormalize the theory. We would wr
Eq. ~29! as

S 1

2
1O~«! D ĝB ~30!

and using our findings at the end of Sec. II conclude that
term of order«0 has to be taken into account.@To be precise:
In Sec. II we had argued on the level of theZ factors as
functions of the renormalized couplinggR . As
gB5gR1O(gR

2) this does not affect our reasoning for th
one-loop term in Eqs.~29! and ~30!.#

This analysis shows that the distinction between fact
d22 and « is not necessary in order to renormalize t
theory aboved52 dimensions. Especially, one may not mi
interpret@4# in the way that one could choosed fixed in the
so-called ‘‘geometrical’’ factors and then perform the lim
«→0 elsewhere. This would result in a divergent term
order 1/« in the renormalization-group functions, violatin
the very principle of renormalizability.

The correct procedure to follow is the following: Expan
the Z factors in « only. Retain terms of orderĝB , ĝB /«,
ĝB

2/«, and ĝB
2/«2. ~Of course, there would be no harm i

keeping higher order terms in«, but this is unnecessary.!
Then calculate the renormalization-group functions.

We refrain from discussing the validity of a perturbativ
renormalization-group approach below the lower critical
mensiond52. Such a scheme would have to meet cert
criteria, such as the validity of the fluctuation-dissipati
theorem ind51. But, it is not clear to us how this procedu
should be defined.

In order to demonstrate the correctness of our proced
and in order to show that factorsd22 and« do not have to
be distinguished, we use theZ factors of@4# in our scheme to
establish the critical exponents. In view of our discussion
Sec. II we first check that the finite term in the factorZD is
correctly taken into account. This is trivially true as norma
izations in@4# are chosen such that the only integral whi
has to be calculated in one-loop order gives exactly 1/« and
no finite contribution.

Replacingd521« and retaining only terms of orderĝB ,
ĝB /«, ĝB

2/«, andĝB
2/«2, theZ factors are

ZD~ ĝB!512
ĝB

«
1

ĝB
2

«2 , ~31!
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Zn~ ĝB!511
1

2
ĝB2

1

2

ĝB
2

«
, ~32!

Zg~ ĝB!512S 3

2
1

1

« D ĝB1S 3

«
1

1

«2D ĝB
2. ~33!

The last factor,Zg , was calculated via the relation

Zg5
ZD

Zn
3 ~34!

as stated in@4#. It is now necessary to transform to renorma
ized quantities. ReplacingĝB in Eqs.~31!–~33! by ~note that
this is sufficient in two-loop order!

ĝB5gR1S 1

«
1

3

2DgR
21O~gR

3 ! ~35!

we obtain

ZD~gR!512
gR

«
2

3

2

gR
2

«
, ~36!

Zn~gR!511
1

2
gR , ~37!

Zg~gR!512
3

2
gR2

gR

«
. ~38!

The renormalization-group functions as defined in@4# are

zD~gR!5m
]

]m U
B

lnZD~gR!5b~gR!
]

]gR
lnZD~gR!,

~39!

zn~gR!5m
]

]m U
B

lnZn~gR!5b~gR!
]

]gR
lnZn~gR!, ~40!

b~gR!5m
]

]m U
B

gR

5
«gR

12gR

]

]gR
lnZg~gR!

5gR@«1zD~gR!23zn~gR!#. ~41!

Using our results from above, we obtain the following tw
loop renormalization-group functions:

zD~gR!52gR2
3

2
gR

2, ~42!

zn~gR!5
«

2
gR2

1

2
gR

2, ~43!

b~gR!5«gR2S 11
3

2
« DgR

2, ~44!
which are identical to the results obtained in Eqs.~3.62!–
~3.64! of @4# after a full« expansion. There is one nontrivia
(g* Þ0) zero of theb function. It is located at

g* 5«2
3

2
«21O~«3!. ~45!

Note that no fixed point of order 1~‘‘nonperturbative fixed
point’’ ! exists in contrast to@2# and@3#. This yields the criti-
cal exponents

zD* 52«1O~«3!, ~46!

zn* 5O~«3!. ~47!

The more standard quantities, the roughness exponentx and
the dynamical exponentz, are

x5O~«3!, ~48!

z521O~«3!. ~49!

In addition, the correction to scaling exponent

v5
]

]gR
b~gR!ugR5g* ~50!

is easily read off from Eq.~44!,

v5«1O~«3!. ~51!

We have given all calculations in this explicit form to co
vince the reader that the standard« expansion is sufficient in
order to obtain the critical exponents given in Eqs.~48! and
~49!.

For all proponents of the minimal-subtraction scheme,
leave it as an exercise that via a variable transformation
finite renormalizations one can transform to the followingZ
factors in the minimal-subtraction scheme:

ZD~gR!512
gR

«
1O~gR

3 !,

Zn~gR!511O~gR
3 !,

Zg~gR!512
gR

«
1O~gR

3 !. ~52!

Using theseZ factors, one of course obtains the same criti
exponents to order«2.

We also found some minor misprints in@4#. For the read-
er’s convenience we give a list here@9#.

VI. CONCLUSIONS

In this article we have analyzed the two-loo
renormalization-group calculations by Sun and Plischke@2#,
by Teodorovich@3#, and by Frey and Ta¨uber @4#. Sun and
Plischke@2# and Teodorovich@3# do not correctly take into
account the finite part of the one-loop diagrams. Theref
their results are incorrect.

The renormalization scheme by Frey and Ta¨uber@4# leads
to the correct result. From the reasoning given in their pa
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one could, however, gain the wrong impression that a
tinction between so-called geometrical factors and 1/« poles
is necessary in order to get a valid renormalization of
KPZ equation. We have shown here that such a distinctio
in fact not necessary above the lower critical dimens
d52. This conclusion is supplemented through work by L¨s-
sig, who showed@10#, using the mapping to directed poly
mers, that the predicted critical exponents

z50,

z52 ~53!

are correct to all orders in«. This result had already bee
obtained in a different context in@11#.
a

-

e
is
n

On the technical level, we have shown that the dime
sional regularization scheme works perfectly well and do
not have to be modified in order to calculate the critic
exponents for the KPZ equation to order«2 above the lower
critical dimension. The analysis of the critical behavior b
low d52 is more subtle and it is presently not clear wheth
there is a valid concept for the analysis of the stron
coupling behavior.
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