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Critical discussion of the two-loop calculations for the Kardar-Parisi-Zhang equation
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In this paper, we perform a careful analysis of the renormalization procedure used in existing calculations to
derive critical exponents for the Kardar-Parisi-Zhang equation at two-loop order. This analysis explains the
discrepancies between the results of the different groups. The correct critical exportenta-re dimensions
at the crossover between the weak- and strong-coupling regime=aé¢°%) andz=2+ O(e3). No strong-
coupling fixed point exists at two-loop ord¢61063-651X97)08010-0

PACS numbe(s): 05.40:+j

I. INTRODUCTION renormalized two-point functionsve denote this by a dpat
a given renormalization scaje are related by
The Kardar-Parisi-Zhan(KPZ) equation[1] ) )
rg'=2(ga) 1§ @
ah(x,t)
at

A
— 2 2
=vVh(x O+ S [Vh(GO1+ 7%, (1) The factorz(gg), which is a function of the renormalized

couplinggg ande only, is introduced to define a finite renor-
200 70X 1) =2D 8% (x—x') S(t—t') (2)  malized two-point functio"’. Then, it is standard to ob-
tain the anomalous dimension of the field, given by the
plays a central role as the simplest field-theoretic model forenormalization-grougd function, see, e.g[5], as variation
nonlinear growth and has extensively been studied during thef In(Z) with respect to the renormalization scalekeeping
last years. Whereas the situation is clear for space dimensidare quantities fixed,
d=1, the(physically more interesting:ase ofd=2 can only
be attacked by approximative methods or field-theoretic per-

1 9 1 J
turbative expansions. Using the latter, the fixed point struc- fogr) =~ 2Ma9u Bln Z2(9r)=~ 5 B(9R) @In Z(9r)-

ture of the renormalization-group flow fdr=2+ ¢ has been (5)
obtained. Two domains can be distinguished: For small ef-
fective coupling In the second line, we have introduced the renormalization-
group B function, which is obtained from the variation of the
_ \?D renormalized couplingg with respect to the renormalization
9= @ scaleu

the renormalization group flow tends to O in the long- (0R)= th—
wavelength limit, for large coupling to a strong-coupling P(Or _’“a,u BgR'
fixed pointg=gsc. The crossover takes place @t gco,

which turns out to be of ordes in ane expansion and can and where renormalized and bare Coup"ng Constg_ﬁnand

(6)

therefore be studied perturbatively. gg are related by
Three such calculations have been performed, one by Sun
and Plischkeg[2], another by Teodorovick3], the third by ng,u*’Zg;l(gR)gR. 7

Frey and Taber[4]. The results are contradictory. We were
able to trace back the difference to a problem in the applicaThe critical pointg* is the zero of the3 function
tion of the renormalization-group procedure, which [&d
and|[3] to incorrect results, see the discussion in Secs. lll, B(g*)=0. (8
IV, and V. We will first derive some elementary and hope-
fully well-known properties of the renormalization group, The critical exponent* is
which will help us to make the point clear.
*=40g%). 9

All these definitions are standafl] and are usen slightly
different notationsin [2—4]. ([3] uses a cutoff regulariza-
tion, but there is no principal differengeéWe now ask the
In the following, we want to exploit the freedom one hasquestion: Is the renormalization fact@(gg), which was
to choose renormalization factors in the dimensional regularintroduced in Eq(4), unique? The answer is nd(gg) can
ization scheme. As an example, take any massless theory ahé multiplied by any finite factoZ;(gg) and I“(RZ) remains
suppose that the derivative with respeckfoof the bare and finite. Instead ofZ(gg) one could therefore usg’ (gg),

Il. SOME ELEMENTARY PROPERTIES ABOUT
RENORMALIZATION AND THE FREEDOM TO CHOOSE
A RENORMALIZATION SCHEME
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Z'(9r) =Z(9r)Z¢(gR)- (100  This ratio is not finite andp), therefore not a correct renor-
malization factor. We will henceforth call this wrong pre-
Let us verify that this is consistent and that the critical ex-scription to find theZ factor in the minimal subtraction
ponentl* is unchanged. The ney function is scheme the “pseudo-minimal-subtraction scheme” in order
to make clear that this very special mistake was made.

, 1 9 , The correct factor to be used in a minimal-subtraction
{'(Gr)=— E“@'”Z (gr) scheme would be
1 J g gk oF
=L(9R) = 5B(OR) 5-InZi(gR). (1D Zus(gr)=1+a 1~ +b o5 +(b_1-aga )
(18)
As Z;(gR) is finite for anyggr, B(ggr)(d/dgg) In Z;(gr) tends
to 0 for gg—g* and we obtain the result as the reader may easily convince himself by the construc-
tion given above.
'(g¥)=¢(g*). (12 Apparently, the terma, cannot be neglected at two-loop

order. Let us determine more generally which terms may
One can also prove that the freedom to chapsés a simple  intervene in am-loop calculation. First of all, the perturba-
finite reparametrization tive fixed point in ane expansion is of ordes

gr=09rZ:(gR)- (13 g*~e. (19

One has, however, to be careful to make this change of varicThere are situations whegg is of ordery/e or similar. For

ables in every renormalization factor. those cases the following argument has to be modjfieet
Let us now discuss the minimal subtraction scheme. Supds now determine in which order efa term of order

pose thaﬂ“g) at the renormalization point satisfies up to "
- i gr

two-loop order, i.e., up to ordegﬁ, = (20)

2 2

- (2) gR gR gR . . . . .

I'y’= 1+a,1?+aogR+ a;gre+ - +b72?+b71 in Z(gg) will contribute to thel function atgg=g*. Taking

care of the factors, which comes from the variation of

In Z(gr) in the definition of¢(ggr), Eq. (5), the answer is,

+boga+bigRe+ -+ |1, (14)  with the help of Eq(19)

€

K
(g*) —gltkl

wherea; andb; are constants and where we have suppressed e —1—
€

higher order terms ie. We now want to introduce renormal-
ization factors. Of course, setting in E@,

(21)

To calculate the critical exponed® up to ordere", one

2 gé therefore has to determine all contributionsZowvhich are

Z(gr)=1+ a,l% +aggrtagre+ -+ b,zg—z +b_;— proportional togy up to ordere” K~ 1,
& & & This means that to calculate up to ordét one can drop
+bogi+bigie+ -, (15  terms fromZ and retain only
makesI'? finite. [The dots stand for the same higher ord 9r Ok gk
RIS >4 ame NIgher OTAer Zy(gr)=1+a_1— +aggr+b_o 5 +b_1—. (22
terms as in Eq(14)]. But this is not the simplest possible € € €
choice. The idea of the minimal subtraction scheme is now to
choose & factor, which contains only the pole terms4n  Note again tha, cannot be dropped.
One is therefore tempted to replaZeoy In the next sections we will apply these considerations to
the two-loop calculations of the KPZ equation in the litera-
gr ., 9=, UO& ture.
ZPM(gR)=1+a,1?+b,2?+b,1?. (16)

Ill. ANALYSIS OF THE WORK BY SUN AND PLISCHKE

The reader is invited to stop for a second to think about this

i . In this section we are going to analyze the two-loo
choice before going on to read. going y P

) renormalization-group calculations by Sun and Pliscfe
Let us see whethétpy correctly renormalizes the theory. geq gi5g the comment 6. From their Appendixes A and B
Then, the ratio o andZpy has to be finite. Expanding up i s clear that the finite part of the one-loop contribution is

to ordergk and dropping all terms of order” and higher, we dropped. They write “In this Appendix we list all expres-

obtain sions of Feynman graphs ... and their final results ine2
) dimensions to orde® (e~ 1).” As there is a finite contribu-
Z(gr) _ 1-aa 9r Y 17) tion at one-loop order, the discussion given above shows that
Zem(9r) 091 ¢ ' their results are incorrect. We would have liked to incorpo-
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rate the missing term in their calculations but as notzall 22—d oo
factors are given explicitly we have to leave it to the authors. P fkk f(k?). (28)
IV. ANALYSIS OF THE WORK BY TEODOROVICH Frey and Taber call the factorsd—2) “geometrical” be-

cause they result from scalar products in the integrand. The
Let us also look at the article by Teodorovi@i. Teodor-  renormalization scheme in Rdl] is such that those geo-

ovich is conscious that the finite part of the one-loop dia-metrical terms are nat expanded in order to meet the con-
grams enters as insertion of these diagrams into two-loogition that a fluctuation-dissipation theorem is validdia 1
diagrams and he explicitly calculates the finite contributionsdimensions. This procedure results in the appearance of the
to the one-loop diagrams in his equatigbsl) and(5.2). But  first nontrivial term inZ, [see Eq.(24)],
then he also drops the finite contribution®&, which is still
present in Eq(5.1), in Eq. (5.3). We are therefore led to the
same conclusion as in the case of Sun and Plischke: The d e
results are incorrect. Let us, however, mention that Teodorl—:

ovich (:]oes notlggree with Qukr criticism. He states that hey, o, 4 term can be dropped, if the distinction between factors
used the Bogoliubov-Parasiuk-Hepp-Zimmerma@PH2) 5 ande is not made. This would be incorrect, since—as

procedure and inserted one-loop renormalized terms in ordg{e nave explained in detail in Sec. ll—this term has to be

to calculate the renormalization factdig]. It, is, however, retained in order to renormalize the theory. We would write
impossible from his articl¢3] to get the precise procedure gq, (29) as

enabling one to verify his claim.

d—_2 % (29)

rom the reasoning if¥] one could gain the impression that

1 .
__ §+O(8))QB (30
V. ANALYSIS OF THE WORK BY FREY AND TA UBER

In this section we are going to analyze the tvvo-loopand using our findings at the end of Sec. Il conclude that the
renormalization-group calculations by Frey anduffer[4],  t€rm of ordere? has to be taken into accoufilo be precise:
see also their comment [i]. In Sec. Il we had argued on the level of tHefactors as

They introduce the following two renormalization con- functions —of ~the renormalized —couplinggg. As

stants for the renormalization &f and v, se€4], Eqgs.(3.43 gs=9gr+O(gR) this does not affect our reasoning for the
and (3.44: one-loop term in Eqs(29) and(30).]

This analysis shows that the distinction between factors
9 &2 d—2 §2 32 d—2 and e is not necessary in order to renormalize the
Zp=1- il —(d-1)=-——="+(d-1) _‘;3 +0(gd), theory aboval=2 dimensions. Especially, one may not mis-
€ d 2e € interpret[4] in the way that one could choosefixed in the
(23 so-called “geometrical” factors and then perform the limit
£—0 elsewhere. This would result in a divergent term of
d—2(0g 95 d—2 g3 a3 order 1£ in the renormalization-group functions, violating
2¢  d_ Z_( - 1)2_82 the very principle of renormalizability.
The correct procedure to follow is the following: Expand
” the Z factors ine only. Retain terms of ordegg, Og/e,
q 2. T©O(%). (24 g2/e, and g2/e2 (Of course, there would be no harm in
keeping higher order terms ia, but this is unnecessajy.

Js=1°g (25) Then calculate the renormalization-group functions.
B K T8 We refrain from discussing the validity of a perturbative
d—2 (26) renormalization-group approach below the lower critical di-
eE=0U—c.

mensiond=2. Such a scheme would have to meet certain

.. . . criteria, such as the validity of the fluctuation-dissipation
(Notg that ourgg=go in the notation of4]. To simplify the theorem ind= 1. But, it is not clear to us how this procedure
considerations, we also have replaced the fundigfd) in  ¢hquid be defined.

Eq. (3.44) of [4] by its value atd=2, see Eq(A38) of [4].
The difference is a term of ordef and can be neglected in
two-loop orden As we will check later thes& factors sub-
tract all divergences correctly. Let us first explain the appear
ance of factorgl ande. Frey and Taber[4] use a dimen-

sional regularization prescription, where divergences appegiyrrectly taken into account. This is trivially true as normal-

- . . . - 2
as poles in . This is the origin of the factors d/and 1k izations in[4] are chosen such that the only integral which
in Egs.(23) and(24). On the other hand, there are integrals has to be calculated in one-loop order gives exactyaid

In order to demonstrate the correctness of our procedure
and in order to show that factods—2 ande do not have to
be distinguished, we use tRefactors of{4] in our scheme to
establish the critical exponents. In view of our discussion in
Sec. Il we first check that the finite term in the facky is

of the type no finite contribution.
Replacingd=2+ ¢ and retaining only terms of ordéy ,
j[z(g,ﬁ)z_kzpz]f(kz), 27 Osle, Gale, and@z/e?, theZ factors are
k
s a2
-~ . 98 98
which are identical to Zo(9s) =1~ "7+ 2 (31)
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Zv(gB)_1+§gB_§?r (32
A 3 . 3 1)\, 33
Zy(9e)=1—|5+ /% F| T 2|9 (33

The last factorZ,, was calculated via the relation

Zp

Zg=? (34

as stated if4]. It is now necessary to transform to renormal-
ized quantities. Replacingg in Egs.(31)—(33) by (note that

this is sufficient in two-loop ordér

~ 1.3 2 3
98=Or*| 7 T 5|9r+O(gR) (35
we obtain
9r 398’
Zp(gR)=1-— —5 -, (36)
1
Z,(9r) =1+ 5 0r, (37
3 9
Zg(gR)=1- 50r (39

The renormalization-group functions as defined4hare

J
InZp(gr) = B(gr) @InZD(gR)v

(39

Jd
§D(9R):/’L£
B

14
InZ,(gr)=B(9r) @lnzv(gR)a (40)

J
gv(gR):lu’@
B

gr

B

Jd
IB(QR):M@

e0R

d
1—9R@|nzg(9R)

=grle+{p(gr) —3Z,(9R)]. (41)
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which are identical to the results obtained in E¢362-
(3.69 of [4] after a fulle expansion. There is one nontrivial
(g* #0) zero of theg function. It is located at

3
g*=¢e— 5824‘0(83). (45
Note that no fixed point of order ¢‘nonperturbative fixed
point™) exists in contrast t§2] and[3]. This yields the criti-
cal exponents

{E=—e+0(ed), (46)

{E=0(ed). (47)

The more standard quantities, the roughness expgpantd
the dynamical exponer, are

x=0(¢%), (48)
z=2+0(&%). (49)
In addition, the correction to scaling exponent
J
= 75 B(OR) gy o (50)
is easily read off from Eq(44),
w=g+0(&%). (51

We have given all calculations in this explicit form to con-
vince the reader that the standaréxpansion is sufficient in
order to obtain the critical exponents given in Eg8) and
(49).

For all proponents of the minimal-subtraction scheme, we
leave it as an exercise that via a variable transformation and
finite renormalizations one can transform to the followihg
factors in the minimal-subtraction scheme:

g
Zo(gR)=1- " +O(gR),

Z,(gr)=1+0(gd),

gr

— +0(g}). (52

Zg(gR): 1-

Using thes& factors, one of course obtains the same critical
exponents to ordes?.
We also found some minor misprints [i#]. For the read-

Using our results from above, we obtain the following two- er's convenience we give a list hefr@).

loop renormalization-group functions:

3,
{p(9r)= —0Or— 5% (42
€ 1 )
gv(gR): EgR_ EgRi (43)
3 2
BloR)=c0r—| 1+ S |02 (44

VI. CONCLUSIONS

In this article we have analyzed the two-loop
renormalization-group calculations by Sun and Pliscfe
by Teodorovich[3], and by Frey and Tiger[4]. Sun and
Plischke[2] and Teodorovich3] do not correctly take into
account the finite part of the one-loop diagrams. Therefore
their results are incorrect.

The renormalization scheme by Frey andifar[4] leads
to the correct result. From the reasoning given in their paper
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one could, however, gain the wrong impression that a dis- On the technical level, we have shown that the dimen-
tinction between so-called geometrical factors ardlddles  sional regularization scheme works perfectly well and does
is necessary in order to get a valid renormalization of thenot have to be modified in order to calculate the critical
KPZ equation. We have shown here that such a distinction igxponents for the KPZ equation to order above the lower

in fact not necessary above the lower critical dimensiorcritical dimension. The analysis of the critical behavior be-

d=2. This conclusion is supplemented through work bgLa |ow d=2 is more subtle and it is presently not clear whether
sig, who showed10], using the mapping to directed poly- there is a valid concept for the analysis of the strong-

mers, that the predicted critical exponents coupling behavior.
{=0,
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